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Statistics of energy flows in spring-coupled
one-dimensional subsystems

By C.S.MANoHAR AND A.J. KEANE

University of Oxford, Department of Engineering Science, Parks Road,
Oxford OX1 3PJ, UK.
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This paper considers the problem of determining the statistical fluctuations occurring
in the vibrational energy flow characteristics of a system of two multimodal, random,
one-dimensional subsystems coupled through a spring and subject to single frequency
forcing. The subsystems are modelled either as transversely vibrating Euler—
Bernoulli beams or as axially vibrating rods. The masses of the subsystems are
modelled as random variables. The calculations of energy flows are based on an exact
formulation which uses the Green functions of the uncoupled subsystems, which, in
turn, are expressed as summations over the uncoupled modes. Factors influencing
the number of modes contributing to the response statistics at any specified driving
frequency are investigated. A criterion for identifying the driving frequency beyond
which the mean power spectra become smooth is proposed. Empirical procedures are
developed to predict the 5% and 95 % probability points given knowledge of the first
two moments of the response. The work reported here forms part of a long term study
into the reliability of statistical energy analysis (SEA) methods.

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

1. Introduction

The process of averaging in statistical energy analysis (SEA) is carried out for two
main reasons: first, it accounts for the random nature of the forces exerted on most
structures, thereby simplifying measures of response; and second, it caters for the
stochastic modelling of the system which is adopted to allow for the sensitivity of
high-frequency responses to minor changes in physical and modelling parameters. Tt
must also be noted that the primary response variables of interest in SEA are the
steady state average total energies stored in the subsystems. These quantities are
obtained as integrals over the extent of the subsystems and also over driving
frequency bands, which imply a further combination of both spatial and frequency
averaging. The results obtained are clearly dependent on details of the averaging
processes such as the frequency bandwidths, quantities treated as random and the
probability distribution functions assumed for these random quantities. Each form
of averaging is accompanied by a reduction in the resolution of the response with
respect to amplitude, time, space or frequency parameters. This is, of course,
consistent with the primary aim of sEa modelling, which is to produce simplified
models of system behaviour which describe gross properties of system responses.
However, in order that the average results can be interpreted properly, especially
with respect to observations made on a single realization of a system or an excitation
over a limited time or frequency interval, it is essential that each process of averaging
be accompanied by associated estimates of the measures of dispersion. While it is
fairly straightforward to analyse the dispersion associated with averaging across an
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ensemble of time histories using standard random vibration theory (see Lin 1967),
the study of other forms of averaging is considerably more complicated. This
difficulty constitutes a major shortcoming in the application of sEA procedures to
practical problems and has received relatively little attention in the literature. Work
has so far been carried out in this direction by Lyon & Eichler (1964), Lyon (1969),
Davies & Wahab (1981), Davies & Khandoker (1982), Fahy & Mohammed (1992) and
Keane & Manohar (1993). The studies conducted by Skudrzyk (1968, 1980, 1987) on
the bounds of system transfer functions can also be cited in this context. A discussion
on related issues can also be found in the works of Scharton & Lyon (1968), Hodges
& Woodhouse (1986), Heron (1990) and Craik (1991).

The present study considers this problem by investigating the stochastic
variability of energy flows in a system of coupled beams or rods. The statistics of the
dissipated powers in the individual subsystems are investigated as functions of
driving frequency, for the cases of point harmonic and rain-on-the-roof type
distributed excitations (i.e. for single frequency driving). The bands enclosing the
5% and 95 % probability points are shown to display different types of behaviours,
namely, oscillatory, convergent, divergent or stationary, depending on the choice of
subsystem type (i.e. beams or rods), damping models, type of excitation and details
of the stochastic model used for the system. A non-dimensional parameter related to
the variability in the subsystem natural frequencies is introduced which is shown to
be useful in characterizing the frequency beyond which the resonant behaviour of
individual modes no longer dominates the response statistics. Clearly, this frequency
represents a cutoff point below which simplified theories like sEA cannot be
guaranteed to work well. The problem of estimating confidence bands empirically
using knowledge of the first two moments is also investigated. This study shows that
the energy flow statistics can be described reasonably well using either gamma or
lognormal probability distribution functions.

2. The two-subsystem model

The system under consideration consists of a pair of transversely vibrating beams
or axially vibrating rods, which are mutually coupled through a spring, the system
configuration being illustrated in figure 1. The subsystems are assumed to have
random material and/or geometrical properties and are taken to be viscously
damped. No restrictions are placed either on the magnitude of damping or the
strength of the coupling spring. The external excitations acting on the system are
modelled either as point harmonic forces or as a rain-on-the-roof type distributed
forcing. The aim of the present study is to examine the probabilistic nature of the
energy flow characteristics in the system arising out of random fluctuations in the
system properties. The deterministic aspects of energy flow characteristics in this
type of system have been studied by Davies (1973) and Keane (1992). The
expressions for the receptance functions and the input, dissipated and coupling
powers are readily available in these references and hence are reproduced here
without detailed derivation. Thus, when two subsystems are coupled at x; = a; and
excited by point forces Fj(¢) acting at x; = b;,7 = 1, 2, the input power and coupling
power receptances for the first subsystem are given respectively by

M) = (/) 3 eu b3+ @b [ 1] S vt/ | 1)

Phil. Trans. R. Soc. Lond. A (1994)
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/ a 1 Fi(0)
P1AEL LGy
b,
= VNNV Fy(1)
ke
P2AEM,LocyT,
a; b2
= x,
Figure 1. Two spring coupled one-dimensional subsystems.
2 k2 o] 0 2
and Hyy(w) = AR 2 Cor(Y3(as) /|B,1%) | Z (¥a(by) Yrilay)/ B5) 2)
mimy|d|* i=1

Similarly, when the system is excited by distributed forces Fi(x;,t),7 = 1,2, of the
rain-on-the-roof type, the above receptances are given by

Hys(0) = (0/m) 3 0,116 + @k /o In{ 3 a/gta)} @)

i=
2k2 00

and Hyy0) = oot )16 S (P 1) @)

In these equations the summations over the indices ¢ and r respectively denote
summations over the modes of the first and second subsystems. The quantities w, and
¥, are the natural frequencies and mode shapes with the quantities ¢, and 4 given

by

b= 0t bicgw and A= 1+ (k/m) T @)/ B0+ (k/my) S (Fas)/,).

5,6
The mode shapes i satisfy the orthogonality conditions given by ©.9)

J%(wl)%(wl)m(%)dwl = My 0y (7)

Here d;; denotes the Kronecker delta function. The quantities m; and p; denote the
total mass and mass per unit length of the ith subsystem. c; is the damping
coefficient of the ith subsystem in the jth mode; k, is the coupling spring constant.
The forces F, and F, are assumed to be ergodic and statistically independent. The
spectra of the input, coupling and dissipated powers can be related using the above
receptance functions as follows:

Iy (0) = Hip (0) SFI((I))’ Iy (0) = le(w)SFI(w)——Hm(w) Spg(w) (8,9)
and 1461 (0) = 11,y (0) — 1T (). (10)

Here Sp(w) is the power auto-spectral density function of F({).

When the mass and/or stiffness properties of the individual subsystems are
modelled as random quantities, the natural frequencies and mode shapes become
random in nature. The functions described above, in turn, become random processes.
The aim of the present investigation is to obtain probabilistic descriptions of the
different power functions given in equations (8)—(10) as functions of the probabilistic
descriptions of the masses of the individual rods. Estimates for the probability

Phil. Trans. R. Soc. Lond. A (1994)
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distribution functions (PDFs) of these quantities can currently only be obtained using
Monte Carlo simulation techniques. For this purpose, an ensemble of realizations of
coupled subsystems are computationally simulated as per the stochastic model
adopted. For every realization of the pairs of subsystems, the natural frequencies and
mode shapes are calculated for the individual subsystems and this information
incorporated into equations (1)—(4) to generate the ensemble of receptance functions.
This ensemble is further processes to obtain the desired pPDFs.

For simple theories like SEA to be useful, it is clearly necessary that the mean
spectra of the different power functions become stationary with increases in the
frequency of interest and moreover, the 5% and 95% probability points should
preferably converge towards the mean. For any given problem it is not obvious at the
outset whether such behaviour occurs and this study identifies some of the more
influential factors.

3. Modal overlap and statistical overlap factors

The receptance functions and power spectra have been expressed in equations
(1)—(10) in terms of summations over the modes of the uncoupled subsystems. At any
specified frequency, the number of modes making significant contributions to the
response is clearly dependent on the bandwidth of the nearby modes and the modal
frequency spacing. The ratio of these two quantities has been defined in the literature
as the modal overlap factor, see Lyon (1975). The modal spacing is governed by the
type of subsystem considered ; for example, it remains constant with frequency for
axially vibrating rods and increases linearly for transversely vibrating Kuler—
Bernoulli beams. The modal bandwidth, on the other hand, is a function of the
damping model adopted for the subsystem. In sga studies the damping is normally
taken to be viscous and proportional. Within the framework of this assumption
several alternatives are possible which can dramatically alter the behaviour of the
receptances and power spectra. Thus, if the damping force per unit length is
expressed as r(x) y(z,t), the damping coefficient r(x) can be taken to be proportional
to local mass, stiffness or a linear combination of mass and stiffness. Depending on
the model used, the modal damping factor, {,, can either fall or rise with the mode
count n. Another alternative which is commonly employed, is to take ¢, to be a
constant for all modes. In this study the damping is taken to be either mass
proportional, leading to modal damping factors falling with frequency and constant
modal bandwidths, B,,, or to be represented by constant damping factors. These two
damping models are summarized in table 1 where the relevant expressions for simply
supported beams and fixed—fixed rods are given. It may be observed from the table
that for constant B,, the model overlap factor remains fixed for rods while it varies
as n~ ' for beams; conversely for constant {,, the overlap factor varies as n for both
beams and rods.

It should be noted here that the strength of random fluctuation assumed for the
subsystem mass parameters has a significant effect on the number of modes
contributing to the statistics of the spectra at any specified frequency. In order to see
this, consider subsystems in which the mass per unit length p is uniform and modelled

as
p = po(1+el), (11)

where U is a gaussian random variable with zero mean and unit standard deviation
and e controls the degree of randomness. Figure 2 shows the resulting probability

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 2. Probability density functions for natural frequencies of beam 1; ¢ = 0.10. Values of n
as indicated on figure.

Table 1. Modal properties of rods and beams

quantity B, ¢, beam rod

natural frequency — — n*n®/L%+/(EI/p) nn/L+/(AE/p)
modal spacing — — n2/LA(1+2n)+/(EI/p) n/L+/(AE/p)
modal overlap factor, M c c/2w, cLP/mA(142n){\(EI/p))  cL/n{\/(AE/p))

28w, ¢ 28n®/1+2n 2¢n
statistical overlap factor, S, — — 2/n?/1+42n 2an

_ mean modal bandwidth _ 20,
7 mean modal spacing " <o, -0,

o= [CAE/p) =<V (AE/p))* )<V (AE/p)), B = VI{BI/p)— <V (El/p))*)/{V(EI/p)).

density functions of a set of ten consecutive natural frequencies for a simply
supported beam (a similar plot is obtained for the case of a fixed—-fixed rod, except
that the frequency spacing is then constant). It can be seen from this figure that the
probability density functions ‘overlap’ increasingly for higher frequencies. This
overlap will clearly be greater for larger ¢. This implies that the randomness
parameter € plays a role similar to that of the damping bandwidth in the sense that,
at any specified frequency, an increase in ¢ results in a larger number of modes
contributing to the statistics of the response. This behaviour is not reflected clearly
in the definition of the model overlap factor although it is weakly dependent on e.
Consequently, it is useful to introduce a statistical overlap factor defined by

S, =20,/{w, 1 —w,, (12)
where o, is the standard deviation of the nth natural frequency. From table 1 it can
be seen that this overlap factor increases as n for both rods and beams. As will be seen
in the later sections, §, can be shown to be related to the frequency beyond which
the oscillations in the statistics of the power spectra die out. It may be noted that this
quantity is closely related to the ‘spacing signal to noise ratio’ discussed by Soong
& Bogdanoff (1963) in the context of simple oscillator chains, where departures from
the expected values of natural frequencies were studied.

Phil. Trans. R. Soc. Lond. A (1994)
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4. Statistics of response power spectra

The factors likely to influence the number of modes contributing to responses at
any specified frequency have been discussed in the previous section. The results of a
parametric survey on the statistics of the response power spectra are presented in
this section, highlighting the role played by these factors. The study of such response
statistics is currently not feasible using analytical procedures and here numerical
simulation methods have been used. There are three main questions of interest which
this survey attempts to address.

1. Under what conditions do the ensemble mean square responses become
stationary with respect to the driving frequency ?

2. If they do, what is the frequency beyond which this behaviour can be expected
to occur?

3. Do the contours of 5% and 95% probability points converge onto the mean,
become constant or diverge, with increases in driving frequency ?

Various factors pertaining to subsystem type, damping, stochastic modelling,
excitation and strength of coupling can be expected to influence the answers to these
questions. Of these, the consequences of the stochastic model employed for the
subsystems are perhaps the most difficult to predict. In an earlier study we
considered the energy flow characteristics in a system of two coupled, axially
vibrating stochastic rods and examined different types of random system models
(Keane & Manohar 1993). For most, but not all types of randomness, the transfer
functions were shown to become stationary above certain values of driving
frequency ; equation (11) being of this type. The present study is not focused on the
details of different randomization schemes and so this model is adopted throughout.
None the less, failure to exhibit stationarity should not be discounted when
attempting to apply sEa methods.

The remaining factors of interest have been studied by carrying out a full survey
based on the system of two coupled subsystems already illustrated in figure 1; table
2 details the subsystem properties used. The effects of varying various parameters in
the problem were considered as follows: subsystem type (Euler-Bernoulli beams or
axially vibrating rods), damping models (constant modal bandwidth or constant
modal damping coefficient), magnitude of damping (see table 3), levels of system
randomness (e = 0.01, 0.05 or 0.10) and type of excitation (point harmonic or
distributed rain-on-the-roof excitation). It may be observed from table 3 that the
parameter values for the two damping models have been chosen so that the 10th
mode of rod vibration and 4th mode of beam vibration both have identical damping
factors and modal bandwidths for subsystem 1; these modes lying 25% of the way
through the frequencies considered here. Throughout this survey the energies
dissipated in the two subsystems were investigated for the case when the first
subsystem was excited by external forces with the second subsystem driven only
indirectly through the coupling spring. Consequently, the power dissipated in the
undriven subsystem is proportional to the cross power receptance function while that
dissipated in the driven subsystem reflects both the input and cross power
receptances, see again equations (8)—(10). The coupling spring constants were chosen
as k, = 0.9x10° N m™ for the rod systems and k, = 0.1 x 10° N m™! for the beam
systems to ensure that the subsystems were well coupled to each other (i.e. so that
the behaviour of the undriven subsystem significantly affects that of the driven one
(see Keane 1992)). An excitation frequency range from 0 to 50000 rad s™! was

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 3. Dissipated power spectral density function for subsystem 1 of the rod system;
rain-on-the-roof excitation; ¢ = 130 s™*. ——, power; - - - - , modal overlap factor.

Table 2. Subsystem physical properties

mass/unit
length drive point, coupling point,
subsystem length/m rigidity (kg m™) a/m b/m
rod 1 5.0 17.85 MN 4.156 1.15 3.15
rod 2 4.5 17.85 MN 4.156 — 2.115
beam 1 1.0 1536.5 N m? 2.0141 0.23 0.63
beam 2 0.9 1536.5 N m* 2.0141 — 0.423

Table 3. Subsystem damping properties
(Rod 2 and beam 2 have equivalent values of B, and ,.)

system bandwidth damping coefficient
B, = 13.0, B,, = 130.2, B,, = 520.8 ¢, = 0.005

rod 1 B, =78.1, B,, = 781.2, B,, = 3124.8 ¢, =003
B, = 130. & =0.05, &, = 0.005, {,, = 0.0012
B, ="1780.0 & =0.31, &, =0.03, £, =0.007
B, =27, B,=43.6, B, =534.3 ¢, = 0.005

beam 1 B, =164, B, = 261.9, B,, = 3205.7 g, = 0.005
B,=44.0 £ =0.08, {, = 0.005, {;, = 0.0004
B, =262.0 £, =048, ¢ =0.03, {, =0.0024

considered and calculations carried out at 200 uniformly spaced frequencies within
this range. Modal summation bandwidths of 16000 rad s~ for the rod systems and
100000 rad s™* for the beam systems were used throughout.

The effects of changing the damping model on the deterministic spectra of the
dissipated power (i.e. for ¢ = 0) are examined in figures 3 and 4 for the case of rod
systems. The extrema observed in the spectra given in these figures are governed not
only by the subsystem natural frequencies but also by the mode shapes at the points
of driving and coupling. Notice that the spectra of the driven subsystems given here

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 4. Dissipated power spectral density function for subsystem 1 of the rod system;
rain-on-the-roof excitation; { = 0.005; key as in figure 3.
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Figure 5. Statistics of the dissipated power spectral density function for subsystem 1 of the rod
system ; rain-on-the-roof excitation; ¢ = 0.01; ¢ = 130 s71; , mean; —--—--—, 5% probability
point; —--—--—, 95% probability point; ---------------- , model overlap factor; ———————-
statistical overlap factor.

are influenced by the natural frequencies of the non-driven subsystems and also by
the mode shapes at the points of coupling, these effects being indicative of the strong
coupling between the two subsystems. With the constant bandwidth damping
model, the modal overlap factor remains constant with respect to frequency and,
accordingly, the range of the spectra also remains constant (i.e. the maximum minus
the minimum values). Beam systems with constant damping bandwidths behave
similarly but the increasing modal spacing reduces the modal overlap factor as the
driving frequency rises and, in consequence, the range widens with these increases.
For the constant damping ratio model, the modal overlap factor increases with

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 6. Statistics of the dissipated power spectral density function for subsystem 1 of the rod
system; point harmonic excitation; e = 0.10; { = 0.03; key as in figure 5.
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Figure 7. Statistics of the dissipated power spectral density function for subsystem 1 of the
beam system ; rain-on-the-roof excitation; ¢ = 0.10; { = 0.03; key as in figure 5.

frequency for both beams and rods. Consequently, the spectra in such cases tend to
become smooth at higher frequencies. Clearly, for all cases, the range is found to
reduce with increases in the value of modal overlap factor.

The statistics of the response spectra have been estimated using Monte Carlo
simulation procedures with 2500 samples and results obtained for the parameter
variations mentioned above. A subset of these results are presented in figures 5-12
which display the principal features of the spectral statistics with respect to the
different parameters explored. In all cases only the power dissipated in the driven
subsystem is plotted: as has already been noted this quantity depends on both the
input of energy and its transmission to the undriven subsystem; for the strong

Phil. Trans. B. Soc. Lond. A (1994)
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Figure 8. Statistics of the dissipated power spectral density function for subsystem 1 of the rod
system; rain-on-the-roof excitation; ¢ = 0.10; ¢ = 130 s'; key as in figure 5.
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Figure 9. Statistics of the dissipated power spectral density function for subsystem 1 of the
beam system; rain-on-the-roof excitation; ¢ = 0.10; ¢ = 262 s7*; key as in figure 5.

coupling strengths used here these quantities are of roughly equal magnitude and
their statistical properties are found to be similar.

1. For low values of ¢, the trends of the statistics closely follow the corresponding
deterministic cases (cf. figures 3 and 5), which is consistent with the fact that, as
e— 0, the statistical solution converges to the corresponding deterministic result. The
variability in the response is seen from figure 5 to be greater at higher driving
frequencies and this is consistent with the greater variability found in the higher
natural frequencies.

2. The most dramatic qualitative change in the behaviour of the 5% and 95%
probability points is caused by the choice of damping model. For the constant ¢,
model, the contours of the probability points tend to converge onto the mean for

Phil. Trans. R. Soc. Lond. A (1994)
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Figure 10. Statistics of the dissipated power spectral density function for subsystem 1 of the
rod system; rain-on-the-roof excitation; e = 0.01; { = 0.03; key as in figure 5.
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Figure 11. Statistics of the dissipated power spectral density function for subsystem 1 of the
beam system ; rain-on-the-roof excitation; ¢ = 0.20; ¢ = 262 s™*; key as in figure 5.

both the cases of rod and beam systems (figures 6 and 7). This behaviour is associated
with increases in the modal overlap factor arising from increases in bandwidth with
driving frequency, with the convergence being faster for systems with greater modal
overlap factor. On the other hand, for constant B, the probability points tend to
become constant for rod systems (figure 8), while for beam systems they tend to
slowly diverge (figure 9). Again, this behaviour is linked to that of the model overlap
factor, which in this case remains constant for rods but reduces with increases in
driving frequency for beams.

3. When ¢ is small and the damping heavy, not only is there no great variation
between ensemble members, there is also little variation from frequency to frequency,
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Figure 12. Statistics of the dissipated power spectral density function for rod 1 when it is
uncoupled from rod 2; rain-on-the-roof excitation; ¢ = 0.05; ¢ = 130 s7!; key as in figure 5.

since there are then no significant resonant peaks either. In such cases the 5% and
95 % points and the mean all tend to constant values with respect to frequency, see
figure 10.

4. The frequency beyond which the mean becomes stationary (non-oscillatory)
reduces with increases in system randomness (cf. figures 5 and 8). The oscillatory
behaviour of the power spectra is caused by two effects, namely, the occurrence of
resonances and the variation of mode shape values at the points of coupling (and
driving for point forcing). Clearly, in an sga context, the frequency beyond which the
effects of individual natural frequencies and mode shapes cease to dominate
variations in the mean value is of considerable interest. A useful criterion for
identifying this frequency can be stated in terms of the statistical overlap factor.
This survey has shown that for systems under rain-on-the-roof type excitations,
choosing a frequency beyond which §, is greater than 2 guarantees steady mean
behaviour (figures 5 and 8). For systems under point forcing, where the mode shapes
at the driving point also enter the calculations, S, needs to be greater than 3 for
steady mean behaviour. It may be noted in this context that for the beam systems
covered by this survey the statistical overlap factor never reaches such values and
therefore the corresponding mean values always remained oscillatory (figures 7 and
9). If ¢ is increased to 0.20, S,, does then become high enough and the mean becomes
steady for S, > 2, see figure 11. It may also be noted in this context that the cutoff
value of §, is dependent on coupling strength and is smaller for weakly coupled
systems. This point is illustrated in figure 12, where the power dissipated in rod 1,
when it is uncoupled from the second subsystem, is shown (i.e. k, = 0). In this case
it is seen that §, > 1 is sufficient to guarantee smooth mean behaviour. This is
indicative of the fact that the variations in spectra caused by mode shape effects
persists longer than those due to resonance effects.

5. For the same level of damping, larger ¢ implies smoother statistics, with the
width of the confidence band reaching an upper limit (figures 9 and 11). This feature
is more clearly seen in figure 13 which shows the statistics of power dissipated in the
beam system under rain-on-the-roof excitation at w = 25000 rad s7*, as a function of
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e. Clearly, when ¢ is large enough the response at any given frequency may vary all
the way from a resonance to an anti-resonance and the 5% and 95 % points are then
directly related to the bounds of the deterministic spectra. This points towards the
usefulness of the study of bounds of the power spectra for connected systems in the
context of SEA response variability. In particular, a study of the statistics of the
bounds on the spectra would be of interest. Note however, that the models studied
here do not exhibit mode shape variations as the mass densities are always taken to
be constant along the lengths of the subsystems. In situations where this is not the
case, the bounds of the deterministic spectra can no longer be relied upon in this way
(see Keane & Manohar 1993). It should also be noted that ¢ is greater than 0.1 before
such behaviour is seen in figure 13, corresponding to a normalized standard deviation
in the subsystem masses of 10 %. This limiting value of ¢ was observed to be smaller
for higher values of the driving frequency and subsystem modal overlap factors. On
the other hand, for a given level of ¢, greater damping was seen to result in narrower
confidence bands.

6. For the constant bandwidth model, the contour of 5% probability reaches
steady state faster than the contour of 95% probability (figures 5 and 8). This
feature arises because the peak responses are caused by resonant behaviour and
therefore, these responses can be expected to be dominated by a single mode.
Conversely, the minimum responses occur at frequencies away from the resonances
and therefore, where more than one mode contributes to such responses. At higher
driving frequencies the overlap in the Ppr¥s of the natural frequencies increases and
the response, even at resonances, will have contributions from several neighbouring
modes. This eventually leads to the stationarity of the pDF as a whole.

5. Empirical distribitions

The simulation procedure used to carry out the survey described in the preceding
section is general in scope and estimates for the moments and probability distribution
functions of the response power spectra can be obtained with equal ease. However,
to obtain reliable estimates of the 5% and 95 % probability points, a large sample
size needs to be used in simulation work. In practical contexts, such large samples are
seldom available and decisions often need to be made with a more limited data,
where the direct estimates of 5% and 95 % probability points will not be sufficiently
accurate. Thus, it is desirable to develop empirical procedures to estimate these
probability points using knowledge of the first few moments, which, perhaps can be
estimated with relatively less difficulty. Clearly, this is a form of curve fitting and its
success depends upon the choice of the PpF used to fit the data. It may be noted in
this context that the nonlinear nature of the transformations of random variables
implicit in equations (1)—(11) rules out the use of analytical procedures for
determining the PDFs of the power spectra. Besides, the expressions for the spectra,
especially for higher values of k., do not easily suggest any limiting distributions
which might arise as w— 0o or as the number of terms contributing to the modal
summations becomes large. Consequently, the choice of the distribution function has
to be based on trial and error procedures and be guided by mathematical and
computational expediency.

The experience gained by us in this context has shown that distributions with one
parameter, such as the Rayleigh and exponential distributions, do not fit the data
‘well. Amongst distributions with two parameters, the gaussian distribution was
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Figure 13. Statistics of the dissipated power spectral density function for subsystem 1 of the beam

system ; rain-on-the-roof excitation; w = 25000 rad s™*; ¢ = 262 s!; ——, mean; ———, 50%
probability point; —--—--—, 95% probability point; —————— , statistical overlap factor.
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Figure 14. Empirical predictions for the 95 % probability point of the dissipated power spectral
density function for subsystem 1 of the rod system; point harmonic excitation; ¢ = 0.10;
c="780s"1; , simulated; —-—, gamma; —-—, lognormal; ——————, modal overlap factor;
——, statistical overlap factor.

found to be unsuitable, while, the lognormal and gamma distributions give
reasonably good fits. To assess the usefulness of these empirical distributions in
describing the data, the predictions for the 5% and 95% probability points,
skewness and kurtosis coefficients, as functions of w, were compared with the
corresponding simulated results. Two of the predictions for the 95% probability
points are shown in figures 14 and 15. Additionally, comparisons of the probability
distribution functions at a fixed driving frequency of 40000 rad s™! have been given
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Figure 15. Empirical predictions for the 95% probability point of the dissipated power spectral
density function for subsystem 1 of the beam system; rain-on-the-roof excitation; ¢ =0.10;
¢ =262 s™'; key as in figure 14.
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Figure 16. Empirical predictions for the probability distribution of the dissipated power spectral
density function for subsystem 1 of the rod system ; point harmonic excitation; w = 40000 rad s™*;
e=0.10;¢c="780s71; - , simulated ; —-—, gamma; —--—, lognormal.

in figures 16 and 17. A study of these figures reveals that both the gamma and
lognormal distributions provide fairly accurate estimates for the 95% probability
points, although where the statistical overlap factor is low, the gamma distribution
seems to give better results (with the kurtosis and skewness coefficients being
generally better predicted). Conversely, the lognormal distribution works better for
the 5% points.

As has already been stated, the choice of gamma and lognormal distribution in this
study is arbitrary. It may be recalled that the lognormal distribution generally arises
as a limiting distribution of products of independent random variables. On the other
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Tigure 17. Empirical predictions for the probability distribution of the dissipated power for
subsystem 1 of the beam system; rain-on-the-roof excitation; w =40000rads™; ¢=0.10;
¢ =0.03; key as in figure 16.

hand, the gamma distribution arises in Poisson process theory as the time required
for the nth success (see Benjamin & Cornell 1970). Obviously, there is no indication
in the expressions for the power spectra (equations (1)—(10)) that the conditions
favourable to the existence of either distribution are satisfied. Further work clearly
needs to be done to place the use of these distributions on a firmer basis.

6. Conclusions

This study has considered the probability distributions of the dissipated power
spectra in a system of two, spring-coupled, one-dimensional subsystems. The effects
of changing various parameters of the problem on the behaviour of the pp¥s of the
response spectra have been studied using Monte Carlo simulation procedures. These
changes have encompassed choice of subsystem type, damping model, strength of
system randomness and type of excitation (an earlier study considered various
classes of subsystem randomness (see Keane & Manohar 1993)). The present work
pays particular attention to the choice of damping model and the strength of system
randomness. The effects of these quantities have been characterized in terms of the
modal overlap factor and a newly introduced statistical overlap factor, S,. The
modal overlap factor takes into account the effect of subsystem type and damping
while the statistical overlap factor reflects details of the system randomness.

The work presented shows that a cutoff frequency beyond which the mean
response spectra become stationary can be determined by reference to the statistical
overlap factor. For the cases considered here, systems driven by point harmonic
forcing have mean responses independent of frequency when S, is greater than 3,
while for rain-on-the-roof excitations S, need only be greater than 2. For systems
with weak coupling, it turns out that the above conditions can be relaxed to .S, > 2
and S, > 1. This study has also demonstrated that driving frequency dependent
variations in the 5% and 95% probability points are strongly influenced by
corresponding variations in the modal overlap factor. For rod systems with constant
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bandwidth damping models, where the modal overlap factor remains constant with
driving frequency, the probability points tend to a constant spacing. For beam
systems with constant bandwidth damping models, where the model overlap factor
reduces with frequency, the probability points are observed to slowly diverge from
each other. Conversely, for constant {, damping models, where the modal overlap
factors for both rod and beam systems rise with increases in driving frequency, the
probability points converge towards the mean.

In summary, it may be said that, if the modal and statistical overlap factors are
both large (> 3, say), the responses of ensemble members tend to show moderate
deviations from the mean while the mean remains sensibly independent of driving
frequency (e.g. significant damping and parameter randomness, see figure 6). If only
the modal overlap factor is large, there will be small deviations from the mean and
little variation from frequency to frequency (e.g. significant damping with little
parameter randomness, see figure 10). Conversely, if only the statistical overlap
factor is large, the 5% and 95% probability points tend to be widely spaced but
again the mean tends not to vary much from frequency to frequency (e.g. light
damping with significant parameter randomness, see figure 8). Finally, if neither
overlap factor is large, although the 5% and 95% points may not be widely spaced
the mean is likely to show violent variations from frequency to frequency (e.g. light
damping with small parameter randomness, see figure 5). It is usually this last case
that is of most interest in structural dynamics and so, since both overlap factors can
vary with frequency, precise knowledge of their behaviour would seem to be a
precursor to the successful application of sEa methods. Unfortunately, although
typical modal overlap factors may be found from a single realization of a problem,
the statistical factor requires information from a potentially large population. This
may well be available from the output of industrial production lines; it is less easy
to derive when dealing with complicated built up structures made in small batches.
In the absence of such data the maximum and minimum values observed in the
spectra of a single realization may be used to approximate the 5% and 95%
confidence limits for the ensemble across the range of frequencies surrounding such
points; however, such an approach will tend to place the 5% and 95 % points further
from the mean than is likely in most real structures. Moreover, they will be unable
to reflect situations where unusual mode shapes may arise, such as in nearly periodic
structures. Alternatively, the 5% and 95% probability points may be estimated
using knowledge of the first two moments of the response based on a small sample
of systems and an assumed probability function. Preliminary investigations have
shown that the lognormal and gamma probability distributions can usefully be used
for this purpose, although questions still remain on justifying the choice of these
distributions.

This work was supported by funding from the U.K. Department of Trade and Industry which is
gratefully acknowledged.
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